
TASK: PV03
CDRL: A023

06 June 1994

Process Enactment Pilot Project
Lessons Learned
Second Interim Report
Informal Technical Data

This document has bz;.-n approved
fox public zAv.cz« ond salt; its
distribution is UTÜii^hi'A,

STARS-VC-A023/009/00
06 June 1994

DUO QUÄLix? IIJCP3GTSD 1

19950109 138

REPORT DOCUMENTION PAGE
Form Approved

OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington,
VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave Blank) 2. REPORT DATE

06 June 1994
3. REPORT TYPE AND DATES COVERED

Informal Technical
4. TITLE AND SUBTITLE

Process Enactment Pilot Project Lessons Learned Second Interim
Report

6. AUTHOR(S)

Ed Guy, Carol Klingler, Jim Baldo

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Unisys Corporation
12010 Sunrise Valley Drive
Reston,VA 22091-3499

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Department of the Air Force
ESC/ENS
Hanscom AFB, MA 01731-2816

5. FUNDING NUMBERS

F19628-93-C-0130

8. PERFORMING ORGANIZATION
REPORT NUMBER

CDRL NBR
STARS-VC-A023/009/00

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Distribution "A "

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

This report discusses preliminary observations on the integration of process enactment support tech-
nologies, resulting from the Unisys STARS Team Process Enactment Pilot project. A brief description
of project plans and objectives is provided. Experiences to-date are highlighted in terms of the origi-
nal objectives. Planning for additional activities is briefly addressed. This report is written to provide
assistance to the Unisys STARS Team in their efforts to incorporate process enactment support into
the software engineering environment (SEE) for the Army STARS Demonstration Project, to provide
trial use feedback to the vendors of the tools being used, and to inform the STARS Program Office
regarding activities to date. The observations reported may be of value to any organization attempting
to integrate COTS tools in support of the automated enactment of engineering processes.

14. SUBJECT TERMS

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT

Unclassified

15. NUMBER OF PAGES

38
16. PRICE CODE

20. LIMITATION OF ABSTRACT

SAR

TASK: PV03
CDRL: A023

6 June 1994

INFORMAL TECHNICAL REPORT

For
SOFTWARE TECHNOLOGY FOR ADAPTABLE, RELIABLE SYSTEMS

(STARS)

Process Enactment Pilot Project
Lessons Learned

Second Interim Report

Accesion For zzrzi
NTIS CRA&I i—
DTIC TAB D J
Unannounced G
Justification

By i
Distribution/ \

Av-feLi: y Codas \

Dist
Avc.il «

Spc
Jc-J/or)

A~\
?
i
i
i

STARS-VC-A023/009/00
6 June 1994

Data Type: Informal Technical Data

CONTRACT NO. F19628-93-C-0130

Prepared for:
Electronic Systems Center

Air Force Systems Command, USAF
Hanscom, AFB, MA 01731-2816

Prepared by:
Unisys Corporation

12010 Sunrise Valley Drive
Reston,VA 22091

Distribution Statement "A"
per DoD Directive 5230.24

Authorized for public release; Distribution is unlimited.

TASK: PV03
CDRL: A023

6 June 1994
Data Reference: STARS-VC-A023/009/00
INFORMAL TECHNICAL REPORT
Process Enactment Pilot Project
Lessons Learned
Second Interim Report

Distribution Statement "A"
per DoD Directive 5230.24

Authorized for public release; Distribution is unlimited.

Copyright 1994, Unisys Corporation, Reston, Virginia
Copyright is assigned to the U.S. Government upon delivery thereto, in accordance

with the DFAR Special Works Clause.

This document, developed under the Software Technology for Adaptable, Reliable Systems
(STARS) program, is approved for release under Distribution "A"of the Scientific and Technical
Information Program Classification Scheme (DoD Directive 5230.24) unless otherwise indicated.
Sponsored by the U.S. Advanced Research Projects Agency (ARPA) under contract F19628-93-
C-0130, the STARS program is supported by the military services, SEI, and MITRE, with he U.S.
Air Force as the executive contracting agent. The information identified herein is subject to
change. For further information, contact the authors at the following mailer address:

delivery@stars.reston.paramax.com.

Permission to use, copy, modify, and comment on this document for purposes stated under Distri-
bution "A" and without fee is hereby granted, provided that this notice appears in each whole or
partial copy This document retains Contractor indemnification to The Government regarding
copyrights pursuant to the above referenced STARS contract.The Government disclaims all re-
sponsibility against liability, including costs and expenses for violation of proprietary rights, or
copyrights arising out of the creation or use of this document.

The contents of this document constitute technical information developed for internal Government
use. The Government does not guarantee the accuracy of the contents and does not sponsor the re-
lease to third parties whether engaged in performance of a Government contract or subcontract or
otherwise. The Government further disallows any liability for damages incurred as the result of the
dissemination of this information.

In addition, the Government (prime contractor or its subcontractor) disclaims all warranties with
regard to this document, including all implied warranties of merchantability and fitness, and in no
event shall the Government (prim contractor or its subcontractor) be liable for any special, indirect
or consequential damages or any damages whatsoever resulting from the loss of use, data, or prof-
its, whether in action of contract, negligence or other tortious action, arising in connection with the
use of this document.

TASK: PV03
CDRL: A023

6 June 1994

Data Reference: STARS-VC-A023/009/00
INFORMAL TECHNICAL REPORT
Process Enactment Pilot Project
Lessons Learned
Second Interim Report

Abstract

This report discusses preliminary observations on the integration of process enactment support
technologies, resulting from the Unisys STARS Team Process Enactment Pilot project. A brief
description of project plans and objectives is provided. Experiences to-date are highlighted in
terms of the original objectives. Planning for additional activities is briefly addressed. This report
is written to provide assistance to the Unisys STARS Team in their efforts to incorporate process
enactment support into the software engineering environment (SEE) for the Army STARS Dem-
onstration Project, to provide trial use feedback to the vendors of the tools being used, and to
inform the STARS Program Office regarding activities to date. The observations reported may be
of value to any organization attempting to integrate COTS tools in support of the automated
enactment of engineering processes.

Data Reference: STARS-VC-A023/009/00
INFORMAL TECHNICAL REPORT
Process Enactment Pilot Project
Lessons Learned
Second Interim Report

Principal AuthorsQ:

TASK: PV03
CDRL: A023

6 June 1994

Ed Guy Date

Carol Klingler Date

James Baldo, Jr. Date

Approvals:

<//»; J. fas* ^ *f-
Program Manager Teri F. Payton

/>/? i
Date

(Signatures on File)

TASK: PV03
CDRL: A023

6 June 1994

Data Reference: STARS-VC-A023/009/00
INFORMAL TECHNICAL REPORT
Process Enactment Pilot Project
Phase II
Lessons Learned

Table of Contents

1.0 Introduction • 1
1.1 Terminology 1
1.2 Objectives 1
1.3 Requirement Assertions 3
1.3.1 Process-driven Environments 3
1.3.2 Extra-environmental Activities 4
1.3.3 Effectiveness of Enactment Support Technologies 4
1.3.4 Incremental Process Enactment 4
1.3.5 Tool Selection Restrictions 5

2.0 Approach 5
2.1 Selection of a Pilot Process 6
2.2 Candidate Tools 7
2.2.1 Amadeus Measurement System 7
2.2.2 AutoPLAN 8
2.2.3 Design/IDEF 8
2.2.4 MSP & PM Tool Sets 8
2.2.5 PCMS (Product Configuration Management System) 9
2.2.6 SynerVision 9
2.3 Tool Integration Strategy 9

3.0 Lessons H
3.1 Capturing the Existing Process 11
3.1.1 Establishing Task Granularity 12
3.1.2 Process Modeling 12
3.1.2.1 Activity Modeling 12
3.1.2.2 Process Breakdown Structures 13
3.1.2.3 Work Product Modeling • • • 14
3.1.2.4 Life-cycle Modeling 15

Page i

TASK: PV03
CDRL: A023

6 June 1994

Data Reference: STARS-VC-A023/009/00
INFORMAL TECHNICAL REPORT
Process Enactment Pilot Project
Phase II
Lessons Learned

Table of Contents

3.1.2.5 Adjacent Abstractions 15
3.1.2.6 Rapid Iteration 16
3.1.2.7 Tool Selection Influences 16
3.1.3 Summary 16
3.2 Applying Tool Capabilities 17
3.2.1 AutoPLAN 17
3.2.2 Design/IDEF 18
3.2.3 SynerVision 18
3.2.3.1 Models of Use 19
3.2.3.2 Change Vision 19
3.2.4 PCMS 19
3.2.5 Amadeus 20
3.2.6 MSP & PM 22
3.3 Encoding the Process • 22
3.4 Automating Process Steps 22

4.0 Continuing Experimentation 24
4.1 Executing the Process 24
4.2 Evaluating the Process Definition 24
4.3 Adapting the Process 24

Page ii

TASK: PV03
CDRL: A023

6 June 1994

Data Reference: STARS-VC-A023/009/00
INFORMAL TECHNICAL REPORT
Process Enactment Pilot Project
Phase II
Lessons Learned

Table of Contents

Appendix A: Notes on Tool Usage A-l

1.0 AutoPLAN A-l
1.1 User Interface A-l
1.2 Producing Schedules A-l
1.3 Reporting A-l
1.4 Resource Analysis A-2
1.5 Reliability A-2

2.0 Design/IDEF A-3
2.1 User Interface A-3
2.2 Printing Diagrams A-3
2.3 Data Accessibility A-3
2.4 Process Support - A-3
2.5 Reliability A-3

3.0 SynerVision A-4
3.1 User Interface A-4
3.2 Models of Use A-4
3.3 Writing Process Templates A-5
3.3.1 Language Considerations A-6
3.3.2 Data Storage A-6
3.3.3 Retrieving User-Defined Data A-6
3.4 Reporting A-7
3.5 Documentation A-7
3.6 Support A-7
3.7 Miscellaneous • A-7
3.7.1 Core Dump A-7
3.7.2 Deleting Tasks from Shared Projects A-8

Page iii

TASK: PV03
CDRL: A023

6 June 1994

Data Reference: STARS-VC-A023/009/00
INFORMAL TECHNICAL REPORT
Process Enactment Pilot Project
Phase II
Lessons Learned

Table of Contents

3.7.3 Multiple Actions A-8
3.7.4 Sparc Support A-8
3.8 Summary A-8

4.0 PCMS A-9
4.1 User Interface .. A-9
4.2 Control Plans A-10
4.3 Product Hierarchies A-ll
4.4 Repository Construction and Access A-ll
4.5 Use of Environment Items A-ll
4.6 Version Management A-12
4.7 Baseline Management A-12
4.8 Configuration Builds A-12
4.9 Additional Capabilities A-12
4.10 Documentation and Training A-12
4.11 Reliability A-12
4.12 Tool Integration A-13
4.13 Summary A-13

Page iv

6 June 1994 STARS-VC-A023/009/00

1.0 Introduction

This report discusses preliminary observations on the integration of process engineering support
technologies, resulting from the Unisys STARS Team Process Enactment Pilot project. A brief
description of project plans and objectives is provided. Experiences to-date are highlighted in
terms of the original objectives. Planning for additional activities is briefly addressed. This report
is written to provide assistance to the Unisys STARS Team in their efforts to incorporate process
engineering support into the software engineering environment (SEE) for the Army STARS Dem-
onstration Project, to provide trial use feedback to the vendors of the tools being used, and to
share experiences with other STARS program participants. The observations reported may be of
value to any organization attempting to integrate COTS tools in support of the automated enact-
ment of engineering processes.

1.1 Terminology
Feiler and Humphrey1 define process enactment as "the execution of a process by a process agent
according to a process definition". Throughout this report we have attempted to use the term in
accordance with that definition; some ambiguity may be evident in certain contexts. Use of the
term execution in this report implies automation, whereas performance may describe the activity
of a human, a machine, or both.

A process implementation describes how process steps are performed, how performance of those
steps is constrained, and how interaction between processes is coordinated. A manual process
implementation combines all these process elements into a single process which is enacted as a
unit. An automated implementation may separate these elements into an enacting process (which
executes process steps) and one or more control processes (which apply constraints and govern
interactions). The separate processes may be implemented at different times and may be enacted
independently.

Process engineering support technologies include concepts, methods, and tools that assist the pro-
cess engineer in the development of a process implementation, as well as those employed to assist
the process agent in the performance of the process.

1.2 Objectives
Three primary objectives have been established for the project. The first is to gain an under-
standing of existing and emerging process support technologies. We have combined basic pro-
cess engineering concepts and methods from the STARS program and other sources to construct a
loosely connected process engineering framework. The "STARS Conceptual Framework for
Reuse Processes (CFRP)" and the "STARS Process Concepts Summary" contribute to the frame-
work, along with Structured Analysis & Design Technique (SADT) and a Process Breakdown
Structure formalism. It is not our intent to test or formally verify any particular aspect of the

1. Feiler, Peter H. and Humphrey, Watts S.
Proceedings of the Second International Conference on the Software Process
Berlin, Germany
February 25 - 26, 1993

Page 1

6 June 1994 STARS-VC-A023/009/00

framework, but to determine how well the concepts relate to actual practice and whether the
methods promote consistent analysis.

The second major objective of the project is to gain expertise in the application of the tools
selected as candidates for integration into the STARS SEE. The kinds of expertise needed varies,
depending on the role occupied by a particular user of the tool. Process engineers need to under-
stand the specific capabilities and limitations of each tool before applying the tool to a task. They
need to know what skills will be needed to apply the tool and the level of effort required. A corre-
sponding knowledge of how to access tool capabilities, avoid limitations, acquire skills, and esti-
mate effort is needed by process performers who will use the tool. Environment integrators need
to understand the mechanisms provided by the tool for exchanging information with other tools
and with external processes.

In the construction of a process-driven environment, expertise in the use of a tool as an isolated
set of capabilities may not be adequate to provide an acceptable level of process support. It is also
important to understand how those capabilities can be combined to enact a prescribed process.
Often, a capability in one candidate tool is duplicated, in part or in whole, in another candidate
tool. Such duplication can, potentially, introduce process conflicts or inconsistencies in the
exchange or interpretation of data and control information, as well as add complexity to the pre-
sentation of the target process. Tools designed to implement a specific process may perform well
in the execution of that process, but be difficult to adapt to other applications.

Some tool providers attempt to avoid imposing a particular process upon the users of their prod-
ucts. Absent a formal concept of operations, these tools often reflect an apparent application par-
adigm, stemming from their developers' implicit or assumed models of use, that can be difficult to
characterize. The level of consistency in the tool's representation and execution of that paradigm
can impact the tool's ability to effectively communicate its intended mode of operation to a user,
the ability to integrate with the capabilities of other tools, the internal interoperability of the tool's
capabilities and the ability to apply those capabilities to support a particular process. Environment
integrators need to understand the apparent application paradigm of each tool. They need to deter-
mine the degree to which the paradigm is compatible with target processes, whether or not the
tool can support alternate models of use, and the effort required to enable that support.

The third objective of the project is to enable process engineering support for the Army
STARS Demonstration Project. The Army CECOM Software Engineering Directorate is partic-
ipating with the STARS program, applying new tools and technologies to support improvements
in the processes used to maintain and evolve software for mission-critical systems. The knowl-
edge and expertise gained from the Process Enactment Pilot project will help to increase the Dem-
onstration Project's confidence in the adoption of process enactment technologies. The
application of validated concepts and methods can assist in the analysis and definition of software
development processes, and in the identification of enactment roles to be satisfied by the SEE.
Tool expertise can assist in the selection of individual tool capabilities to satisfy those roles, to
ensure mutual support among the capabilities, and to circumvent any incompatibilities that may
exist. The Process Enactment Pilot project's characterizations of requisite skills and levels of
effort needed for process engineering activities can assist the Demonstration Project in planning
its own process enactment and training efforts. The combined experiences of the Process Enact-

Pagc2

6 June 1994 STARS-VC-A023/009/00

ment Pilot and the Demonstration Project may provide enough practical experience to determine
the feasibility of defining a generic process implementation process.

1.3 Requirement Assertions
During initial planning various issues were raised by the process engineering team concerning
approaches to process enactment being pursued by different STARS organizations, potentially
negative effects of process automation, the reliability of available technologies, etc. Throughout
the experiment these issues have continued to guide and constrain the direction of the project. In
effect they form a set of informal assertions of requirements that govern the effort.

1.3.1 Process-driven Environments

Assertion

The operation of an automation environment should be governed by the properties of the
processes enacted within the environment, not by the properties of the mechanisms
employed to enact the processes.

Rationale
The goal of any process automation effort should be to allow humans to make more effective use
of their analytical and creative skills by minimizing the tedium associated with the performance
of repetitive tasks. All too often, the automation of a work process has failed to achieve this goal,
causing many individuals and organizations to resist the idea of process automation. In many
cases the failure can be attributed to the methods used to implement the process.

Automated implementations of processes can tend to be driven more by the capabilities of the
tools used to automate the processes, than by the processes being automated. Absent a high
degree of compatibility between a tool's application paradigm and the human agent's process par-
adigm, a significant conceptual reorganization of the process can occur during development of the
implementation. Rather than provide automated mechanisms to assist the agent in the perfor-
mance of a task, the implementation may present a completely different task to be performed. The
new task may bear little resemblance to the work with which the agent is familiar and may require
application of a radically different set of skills, making the automated process more difficult to
perform than its human-enacted counterpart. The implementation may require assistance from the
human agent to support its internal processes, thereby reversing the roles of the agent and the
environment, increasing the amount of tedium imposed upon the agent, and making less effective
use of the human resource.

The behavior of any process is inherently dependent upon the general capabilities of and specific
mechanisms employed by the agents that perform the process, including those of both automated
tools and human agents. The application of any particular set of automated mechanisms may
necessitate radical changes in the internal organization of a process task. Such changes should not
be allowed to fundamentally alter the human agent's concept of the work to be done.

Page 3

6 June 1994 STARS-VC-A023/009/00

1.3.2 Extra-environmental Activities

Assertion

A process implementation employing automation to execute process tasks must provide
coordinate support for process tasks that are performed outside the context of the automa-
tion environment.

Rationale
Large-scale process automation has proven somewhat ineffective due to a necessary concentra-
tion of attention on environment-centered processes. Many of the tasks associated with a software
development effort are not performed by automated mechanisms, making it difficult to support
those tasks in an automated environment. There is a need to develop effective techniques for sup-
porting unobtrusive interaction between manual and automated performance mechanisms.

1.3.3 Effectiveness of Enactment Support Technologies

Assertion

To be of significant value, technologies employed in the development of automated pro-
cesses should offer significant advantages over traditional software development technolo-
gies.

Rationale
Development organizations possess the requisite knowledge and skills to apply software engi-
neering techniques to solve technical problems. Software development technologies are being
developed to reduce duplication of effort in the development of reusable software systems. Imple-
mentation of automatically enactable processes can be accomplished using the same knowledge,
skills, and technologies. Such development can, however, be performed by individuals who are
not grounded in traditional software development methods if process engineering technologies
can minimize dependency upon the individual's software engineering skills. Process engineering
technologies that fail in this regard may offer little added value over that of other technologies
supporting software development.

1.3.4 Incremental Process Enactment

Assertion
Support for incremental process automation techniques is a consideration in the recom-
mendation of candidate technologies.

Rationale
An organization may have neither the resources nor the skills needed to undertake comprehensive
re-engineering of their business processes prior to initiating process automation efforts. An orga-
nization may also consider it undesirable to adopt and implement externally defined processes or

Page 4

6 June 1994 STARS-VC-A023/009/00

process segments requiring radical changes in their fundamental practices. An organization may
approach automation of process enactment incrementally, perhaps in conjunction with a general
process improvement program.

1.3.5 Tool Selection Restrictions

Assertion

The set of candidate tools and technologies for the Process Enactment Pilot project is lim-
ited to those which are currently available from commercial sources, for which prototypes
are available, or are under development by a STARS participant. STARS participants, par-
ticularly Unisys STARS commercial partners and Prime Affiliates, are afforded special
consideration in the selection of candidate technologies.

Rationale
A typical process engineering effort will be constrained in its selection of tools and technologies.
Organizations typically do not have the resources needed to develop their own automation envi-
ronment to address their process needs, nor are they willing to accept the risk of using research
prototypes or unsupported freeware in production environments; acquisition of technologies from
commercial sources is necessary. Furthermore, contractual agreements, special purchasing
arrangements with either internal or external suppliers, and budgetary restrictions may limit the
commercial technologies an organization can apply.

In recognition of these practical realities, STARS is chartered to apply and integrate available
commercial products that support the megaprogramming paradigm and to accelerate the transition
of new technologies into the commercial marketplace in areas that current commercial offerings
do not adequately address. The Unisys STARS team has formed alliances with several organiza-
tions, including Hewlett-Packard, Software Design & Analysis, and Amadeus Software Research
to help achieve these objectives. Commercial technologies from each of these companies are
being integrated and applied in the Process Enactment Pilot project. In fact, the Unisys STARS
team was instrumental in transitioning the Amadeus research prototype into a commercial prod-
uct.

2.0 Approach
The objectives of the Process Enactment Pilot project and the requirement assertions developed
by the engineering team describe an approach to the experiment that balances the needs of the
human process agent with the capabilities of the available tool set. Development of a detailed pro-
cess description will occur in conjunction with the accumulation of tool expertise. The following
activities have been selected to support this approach:

• Select a process for pilot enactment
• Identify a set of candidate enactment tools
• Capture a definition of the existing process
• Identify tool capabilities to support process roles
• Encode the process in enactable form

Page 5

6 June 1994 STARS-VC-A023/009/00

• Automate process steps using individual and integrated tool capabilities
• Perform the process in an operational context
• Evaluate the effects of automation on performance of the process
• Adapt the process to take advantage of additional capabilities within the environment

2.1 Selection of a Pilot Process
Four general criteria for the selection of a pilot process are defined; other considerations, reflect-
ing known limitations or advantages of a particular tool set could be used to augment these crite-
ria.

1. The process must be currently in use. Experimentation with a live process provides for trial
enactment of the process in an operational environment and comparison against the existing
implementation.

2. The process must be well understood. Selection of a process familiar to the team allows the
team to concentrate its efforts on the application of candidate technologies, minimizing the
need for process training.

3. The process must be reasonably complex. That is, it must have readily identifiable bounds, so
the scope of the effort can be contained, yet be complex enough to exercise the technologies.

4. The process must provide an opportunity to apply the knowledge gained through the experi-
ment and measure the impact of its application.

Our own internal STARS document delivery process was selected for the project. This process
involves the submittal, review, and delivery to various destinations of STARS software and docu-
mentation, technical reports, etc. and is used daily. While written descriptions exist for some
activities, most of the process knowledge rests in the experience of the STARS Data Manager.
Automated support for some activities is already provided via Unix shell scripts. The pilot project
team shares a common understanding of the purpose of the process and the activities involved.
The process is rather broadly defined, yet consists of a number of relatively simple activities; it
involves multiple user roles, collateral activities, and non-sequential dependencies. Performance
of the process has been subject to significant productivity variations, induced by changes in both
personnel and operating environment. Figure 1 depicts a top-level description of the process.

Page 6

6 June 1994 STARS-VC-A023/009/00

AUTHOR: Ed Guy
PROJECT: Process Enactment PUot

NOTES: 123456789 10

DATB: 10/06/93
REV:

X I WORKING

RECOMMENDED
PUBLICATION

CONTEXT:

Top

Cl Contractual Requirements

Submittal Notice

Submitted
Document Capture

(AOTlj 5" SOW

Initial
Review Package

C2 Project Guidelines

7 7

(A0T2) -S Ö

Completed
Review
Package

Corrective Action

Distribution
Requirements

Accepted
Document

7 7

Distribute

(A0T3)^ 5"
A3

Status

H>01

DT1C
Registration

Delivery
Package

—>02
-t>03

Distribution
Upgrade
Package

STARS Data Manager M2 Designated Review Team M3 STARS Contracts Representative Ml

NODE: A0 TITLE: Deliver STARS Document NUMBER: EG 2

Figure 1
Deliver STARS Document - S ADT Diagram

2.2 Candidate Tools

2.2.1 Amadeus Measurement System
Amadeus Software Research
Irvine, California

Version: 2.1.7
Platform: Sun Sparc, HP 9000/700

Amadeus is a measurement-driven analysis and feedback system that provides infrastructure and
services to automate the collection, analysis, and visualization of process and product metrics.
The tool is a commercial evolution of an initial prototype developed by Dr. Richard Selby of the
University of California at Irvine, as part of the ARPA-funded Arcadia project. Amadeus provides
a low entry barrier to measurement with dynamic, unobtrusive, tailorable capabilities for monitor-
ing processes, tools, and interactive user sessions. Mechanisms for interactive and programmatic
capture of numeric and symbolic measurement data are provided, including application program-
ming interfaces for well-established high-order programming languages, Unix shell interpreters,
and the SoftBench Broadcast Message Server.

Page 7

6 June 1994 STARS-VC-A023/009/00

2.2.2 AutoPLAN
Digital Tools, Inc.
Cupertino, California

Version 1.0.1
Platform: Sun Sparc

AutoPLAN is an interactive project scheduling and control package for Unix-based systems,
designed for distributed processing environments. Various graphical representations are sup-
ported, including Gantt charts, CPM diagrams, and Work Breakdown Structures. Its built-in
report generation capabilities provide support for time, resource, and cost analysis, as well as
progress monitoring.

2.2.3 Design/IDEF
Meta Software Corporation
Cambridge, Massachusetts

Version: 2.5.3
Platform: Sun Sparc

Design/IDEF is a process modeling tool that supports generation of graphical process representa-
tions. Capabilities for producing IDEFO activity diagrams, IDEF1 and IDEF1X data diagrams,
and Entity-Relationship diagrams are provided, along with method-independent drawing capabil-
ity. IDEFO modeling reflects hierarchical task structures, data availability requirements, process
control influences, and selected performance mechanisms; IDEFO diagrams do not dictate specific
activity sequencing. Design/IDEF's IDEFO models can be augmented with activity-based costing
information. Work product modeling is supported by the product's various data representations.
Companion products Design/CPN and WFA Simulator provide support for various aspects of
work flow analysis.

2.2.4 MSP & PM Tool Sets
Innovative Software Engineering Practices Inc.
Leesburg, Virginia

Software Design & Analysis Inc.
Boulder, Colorado

Version: 2.2
Platform: Sun Sparc / PCTE

The Minimally Structured Process (MSP) and Process Mapper (PM) Tool Sets provide process
description and analysis capabilities built around the Process Breakdown Structure (PBS) formal-
ism. MSP supports description of the intent and work involved in performing process steps,
decomposition and control relationships among process steps, and the data availability relation-

Page 8

6 June 1994 STARS-VC-A023/009/00

ships between process steps and work products. It assists in the accumulation of knowledge about
work processes through automated analysis of the syntactic correctness, referential integrity, com-
pleteness, structure, and consistency of a description of the processes. PM extends these capabili-
ties through more formal descriptive techniques and by supporting definition and analysis of work
product states, sub-step sequencing, roles and communication obligations.

2.2.5 PCMS (Product Configuration Management System)
SQL Software Ltd.
Vienna, Virginia

Version: 2.0
Platform: Sun Sparc

PCMS supports management of software product configurations, problem reporting and change
control activities, baseline management, release management, and authorization control. PCMS
provides for the development of hierarchical product structures against which various version
control techniques can be applied. Tool features support the definition of product variants, change
control documents, and product life-cycle management roles. Rules can be defined to relate
change documents to different kinds of managed items and for constructing products from man-
aged components. Automatic generation of formal and informal product baselines is supported,
along with the definition and control of product releases. Many capabilities of PCMS can be
applied to the management of products whose components do not reside within the automation
environment (printed documents, hardware, training materials, etc.).

2.2.6 Syner Vision
Hewlett-Packard, Software Engineering Systems Division
Fort Collins, Colorado

Version: A.00.01
Platform: HP 9000/700

Syner Vision is a process execution tool that supports individual and group task management,
automation of task execution, hierarchical task measurement, and status reporting. Personal and
multi-user shared projects can be created. Reusable process templates can be constructed for
instantiation with project-specific attributes and actions. The tool provides for both textual and
graphical presentation of task hierarchies in a user-controlled viewing configuration. Sequential
dependencies among tasks can be defined for use in either an advisory or enforcement capacity.
SynerVision is available for HP 9000 series platforms, with Sun Sparc support under develop-
ment. It is fully integrated with the SoftBench Broadcast Message Server. Automated actions can
be executed via SoftBench messages and Bourne shell programs.

2.3 Tool Integration Strategy
Figure 2 represents one organization of the candidate tools envisioned by the team. Not all of the
capabilities described are currently enabled within the tool set, but they are considered technically

Page 9

6 June 1994 STARS-VC-A023/009/00

feasible and reasonably compatible with the operational paradigms of the individual tools. This
arrangement has been of value to the process pilot team in the automated enactment of an existing
process. Other organizations have successfully applied the same tools in different relationships to
support development of new processes. Functional overlap among the tools and the variety of
operational paradigms represented should allow integration of the tools to be tailored to the needs
of the users.

In this particular arrangement, MSP & PM would be used to produce a formalized Process Break-
down Structure (PBS), which would provide a basis for the construction of IDEFO diagrams and
other process/product models by Design/IDEF or a similar tool. Such models would be suitable
for training, process improvement activities, etc. General task structures and resource require-
ments would be extracted from the PBS and passed to AutoPLAN for development of a project
management plan. Detailed, step-by-step task definitions and role responsibilities would be
extracted from the PBS for development of project-specific SynerVision task hierarchies and
automated actions, which would be instantiated based on a Work Breakdown Structure (WBS)
and corresponding schedule produced by AutoPLAN. The PBS would also supply information
about work products, suitable for construction of PCMS product structures and control plans.

AUTHOR: Ed Guy DATE: 11/15/93
PROJECT: Process Enactment Pilot ™:

NOTES: 123456789 10
RECOMMENDED

PUBLICATION

CONTEXT:

Top

MSP/PM1
Process Breakdown Structure

-CH Design/IDEF] -t> Process
Model

Task Model,
Resource Model

-C\ AutoPLAN}

Task Definitions, Roles

WBS

-&\ SynerVision |

• SoftBcnch
'BUS

Product Structures,
(Product Lifecycles ^ pcMS ^ >f pCMS

Schedule

-*\ Amadeus |

Project
Status
Reports

i Work Products
CH Amadeusf

NODE: FEO TITLE: Process Enactment Tool Interaction I NUMBER: BO 14

Figure 2
Tool Interaction Scenario

In general, activities would be initiated by SynerVision tasks which would transfer control to
PCMS whenever the activity involved construction or modification of a component represented in
the PCMS product management structure. PCMS would invoke Amadeus measurement agents to
compute, record, analyze, and report product metric information, and would transfer control back

Page 10

6 June 1994 STARS-VC-A023/009/00

to SynerVision upon completion of its product-oriented activity or when instantiation of addi-
tional task hierarchies is needed. Communications between these two tools would be accom-
plished by exchange of messages via the SoftBench Broadcast Message Server. These exchanges
would be monitored by the Amadeus measurement system, which would record information
about process and product states, relative to the baselined schedule, and pass actual completion
dates, elapsed time, etc. to AutoPLAN for generation of project status reports and for interactive
management analysis.

3.0 Lessons

3.1 Capturing the Existing Process
Based on our knowledge of the process and available resources, the engineering team initially
decided not to generate any formal models of the existing process. We believed we could develop
a reasonable task skeleton, representing a complete decomposition of the process from its highest
level of abstraction to its simplest individual process step. Once this had been accomplished we
would begin to address dependencies, work product interactions, etc. We began building a process
description by interactively entering a SynerVision hierarchical task structure. Since the process is
relatively simple and partially automated we expected to be able to generate a reasonably com-
plete, perhaps executable representation using SynerVision's basic capabilities. We learned
quickly that a simple hierarchy of steps can represent only a small portion of the information
needed to adequately describe a process. We noted that each level of decomposition tended to
raise as many questions as it answered, effectively communicating what the process steps were,
but not why they were being performed. It was easy to become absorbed in the details of process
execution that did more to obscure the intent of the process than to expose it.

In some respects, our intimate knowledge of the existing process was proving inappropriate to the
needs of automation. Many tasks translated readily to a SynerVision task hierarchy, however,
reproducing the same sequence of detailed steps that had been performed manually often intro-
duced an unnecessary layer of computerized intervention between the human agent and the goal
of the process. Many such task sequences manipulated low-level process support artifacts (forms,
routing sheets, reports, etc.) that provided assistance to the human agent in performing the pro-
cess, but which might not be necessary in an automated environment. Such detailed tasks were
identified as candidates for automated execution.

Conversely, much of our process knowledge did not readily translate to a hierarchical structure. A
human agent could quickly assimilate the location and organization of a bookshelf containing
several years of contractual correspondence, letters of agreement, notes on internal procedures,
etc. for reference when needed. Some sort of automated support was needed to ensure consistent
application of the information represented on that bookshelf. The decision-making processes in
which that information is used, though trivial for a human agent, introduced an unexpected level
of complexity into our automated process. It became necessary to adopt a more disciplined
approach to development of an initial process representation and to identify mechanisms for rep-
resenting the process in more formal terms.

Page 11

6 June 1994 STARS-VC-A023/009/00

3.1.1 Establishing Task Granularity
Given our difficulties with hierarchical analysis, we attempted to establish a logical basis for
decomposition of task structures. SynerVision documentation suggested that a distinction
between task and action might be useful. (SynerVision provides for the association of manual and
automated actions with each process task). While this distinction may prove useful in the execu-
tion of the process in a SynerVision implementation, it added no additional value in our attempts
at producing a general description of the process. Other equally unsatisfying distinctions (what vs.
how, problem vs. solution,...) were discarded. We surmised that an effective level of granularity
might be achieved by examining the task steps in relation to the physical objects (files, forms,
prints) upon which they operated. Unfortunately, these object relationships seemed even more dif-
ficult to characterize than those between the steps.

3.1.2 Process Modeling

3.1.2.1 Activity Modeling

AUTHOR: Ed Guy
PROJECT: process Enactment Pilot

NOTES: 123456789 10

DATE: 10/06/93
REV:

RECOMMENDED
PUBLICATION

CONTEXT:

Contractual Requirements
Project Guidelines

Submittai Package ■
Deliver STARS

Document

-> Status

-C> Delivery Package

-> Distribution Upgrade Package

STARS Contracts Representative STARS Data Manager Designated Review Team

Purpose: Transmit a technically acceptable, properly formatted, contractually correct document to the STARS customer.

Viewpoint: STARS Data Manager

NUMBER: BO 22 (EOl)

Figure 3
SADT Context Diagram

The necessity to prepare a more complete, more formal model of the process became apparent.
This re-energized interest in SADT modeling techniques (Figure 3). SADT modeling (the basis
for IDEFO) can produce a rich, expressive representation of complex process interactions and can
quickly expose errors and omissions in the process model, provided the needed information is
available and properly organized. The amount of information needed depends upon the complex-
ity of the process and the number of agents involved in its performance, and whether the model is

Page 12

6 June 1994 STARS-VC-A023/009/00

to represent an existing process or one which is being defined for the first time. For initial defini-
tion of a process S ADT diagrams can be used effectively to develop a top-down decomposition of
the process, reflecting increasing detail as the process evolves. For description of an existing pro-
cess, an abstract view of the process is typically derived from detailed information about how it is
performed. Completeness and consistency of that information is critical to the development of an
accurate graphical abstraction. Unfortunately, beyond some techniques for interviewing process
experts, the SADT method does little to guide the process engineer through the collection and cat-
egorization of such information.

3.1.2.2 Process Breakdown Structures
Our Prime Affiliate, Software Design & Analysis (SDA), provided useful guidance in organizing
the process knowledge being collected by describing a process analysis approach based on Pro-
cess Breakdown Structures (PBS). Our application of this approach began with recording process
knowledge in terms of the essential properties of the process. We recorded the purpose of, entry
and exit criteria for, work products used and generated by, and a textual description of the activi-
ties performed within a task or sub-task (see Figure 4) with little immediate concern for its con-
text. Once the initial information had been recorded for a task, its parent, and its immediate
children, a few quick iterations through the structure, adding annotations and adjusting descrip-
tions, produced an understanding of the process that was adequate to support construction of a
preliminary SADT model. Examination of that preliminary model exposed problems and incon-
sistencies that were addressed either by re-examination or further decomposition.

USED AT: AUTHOR: Ed Guv DATE: 10/06/93 X WORKING READER DATE CUNibXl:

Top
PROJECT: process Enactment Pilot REV:

NOTES: 123456789 10

DRAFT
RECOMMENDED
PUBLICATION

Purpose:
Deliver a technically acceptable, properly formatted, contractually correct document to the STARS customer.

Description:
The STARS Data Manager verifies accessibility of the SubmittaJ Package, the reproducibility, and traceability to the Contract Data
Requirements List (CDRL) of the Submittal Package, acknowledges receipt, and routes the document for review by a Designated Review
Team. The team reviews the document content for compliance with the Contract Statement of Work (SOW) and Contract Data Requirements
List (CDRL). If the document is accepted, the Data Manager delivers print and electronic representations of the document to the recipients
identified in the CDRL, forwards a copy to ESC for distribution upgrade (if required), and registers the document with the Defense Technical
Information Center (DTIC). If the document is rejected the Data Manager notifies the submitter and arranges for subsequent resubmittaJ.

Entry Criteria:
Submittal Announced

Work Products Used:
Submittal Package

Work Products Generated:
Delivery Package
Distribution Upgrade Package
Status

Exit Criteria:
Submittal Rejected
Document Rejected
Delivery Verified
Distribution Upgrade Announced
Distribution Upgrade Denied
DTIC Registration Announced

Activities:
Capture Submittal Package
Review Submitted Document
Distribute Accepted Document

NODE: Text A-OTl |TrTLE: DeUv« STARS Document |NUMHliK: GO 6

Figure 4
A-0, Text Page 1: Process Breakdown Structure

Page 13

6 June 1994 STARS-VC-A023/009/00

3.1.2.3 Work Product Modeling

Due in large part to a lack of appropriate skills and, partially, to a particular difficulty in aggregat-
ing process work products in meaningful ways, very little was done to represent the structure and
interrelationships of the work products associated with the target process. We have been able to
identify three categories of work products for our process:

• primary - the work product whose manipulation is the purpose of the process - in our
case, the STARS Document to be delivered

• companion - electronic delivery notices, letters of transmittal, and other work products
that represent the primary work product in a corollary process

• support - forms, routing sheets, reports, and other work products that are used to manage
the process itself

USED AT: AUTHOR: Ed Guy
PROJECT: process Enactment Pilot

NOTES: 123456789 10

DATE: 10/21/93
REV:

X WORKING READER DATE CONTEXT:

Top
DRAFT
RECOMMENDED

PUBLICATION

narne.de fines

<>

-O -o-
process_name.derives

PostScript

process_name.derives

ASCII

prccess_name.derives

Document Derivation NUMBER: EG 13

Figure 5
Primary Work Product Derivation

A simple derivation tree (Figure 5) was produced for the primary work product of the target pro-
cess, and was useful for defining a product build sequence within PCMS. Our current tool set does
not provide adequate support for modeling work products and their relationships to each other.
Perhaps, a good ERA diagramming tool would be helpful.

Page 14

6 June 1994 STARS-VC-A023/009/00

3.1.2.4 Life-cycle Modeling
We also generated a life-cycle model, consisting of an interlaced set of simplified state-transition
diagrams (Figure 6) showing pertinent portions of work product life-cycles and their relationships
to each other. Our intent was to use these diagrams to define control plans for PCMS, which
proved inappropriate. The diagrams have helped to identify natural boundaries in the structure
and flow of the target process. A consistent method for representing interrelated product life-
cycles is needed.

AUTHOR: Ed Guy DATE' 11/18/93
PROJECT: procsss Enaclment PUot REV:

NOTES: 123456789 10
RECOMMENDED
PUBLICATION

Submittal Package | Received]

I Rejected |
~c

I Validated [■ ■
—r—

I Acknowledged |

Review Package Distributed

| Updated fo—E| Updated [

| Completed} ■

Distribution Upgrade [Requested

[Denied | | Granted |

X
I Announced]- -

OTICRegistration ISubmitted!

31

Announced}- -

Delivery Package j Prepared | ^

j Transmitted] j

j Announced]- -

v
| Verified \- - -

DATE CONTEXT:

Document | Submitted

] Qualified

' \ Accepted] | Rejected j

Upgraded
* <7

Cataloged

I Registered j

| Archived |

NODE FEO TITLE: Wode Product life-Cycle interactions NUMBER: EG 5

Figure 6
Simplified Work Product Life-Cycle Model

3.1.2.5 Adjacent Abstractions
Whatever sort of analysis may be in progress, whether Functional (activities), Informational
(work products, for now), or Behavioral (represented by our life-cycle models) an interesting pat-
tern has been noted. Whatever the subject of analysis may be, that subject cannot be reasonably
understood without a working model of its adjacent abstractions. Before one level of decomposi-
tion can be completely defined, it is necessary to construct a preliminary model of the next lower
level, which raises questions about the subject level, which can only be answered by analysis of
its higher-level abstraction. Similarly, before a level of decomposition for an activity can be com-
pletely defined, it is necessary to construct preliminary models of work-products and life-cycle
interactions related to the activity. These models might be viewed graphically above, below, and
to either side of the subject model and are, therefore, considered adjacent.

Page 15

6 June 1994 STARS-VC-A023/009/00

3.1.2.6 Rapid Iteration

This iterative analysis of adjacent abstractions is typically repeated several times until an ade-
quately defined, consistent model view has been produced. The more times the cycle is repeated,
the more complete and consistent the view becomes. There is a tendency to define one abstraction
as completely as possible before examining adjacent abstractions. Experience suggests that the
rate at which the desired level of completeness and consistency is achieved may be more closely
related to the number of iterations than to the amount of time spent in each. By producing a con-
sistent, perhaps shallow, view of each adjacent abstraction during one iteration, it should be easier
to maintain that consistency during subsequent iterations, thereby reducing the overall cycle time.

3.1.2.7 Tool Selection Influences
Enactment tool architectures and capabilities had less influence on our process modeling and
analysis activities than originally expected. Certainly, there is nothing in the SADT activity model
that reflects particular SynerVision capabilities. Tasks have been defined with a formal hierarchy
in mind, and our knowledge of SynerVision capabilities has affected the level of detail addressed
during analysis. There is no evidence, however, that the result would have been different if any
other task management tool were targeted.

Since an understanding of the process work products was needed, since work product modeling
was incomplete, and since PCMS uses state transitions to govern product life-cycles, a PCMS-
style life-cycle model was produced for the work product set. We expected that model could be
used initially to specify a PCMS control plan for the primary work product of the process. Lack of
flexibility in the definition of PCMS control plans has inhibited satisfactory instantiation of the
life-cycle specification within the tool; alternate means of representing the specified life-cycle in
PCMS are being investigated. It has been necessary to revise the life-cycle model somewhat to
ensure compatibility with the PCMS paradigm. In this particular instance, the modification does
not significantly alter the human agent's view of the process being performed. Under other cir-
cumstances such incompatibilities may necessitate more formal trade-off analyses, comparing the
impact on the human agent to the effort required to maintain an existing operational paradigm.

It appears that particular tool capabilities may have little effect on the development of an abstract
process model that describes a target process. It should be practical to continue evaluation of can-
didate tools until the abstract process model is reasonably complete. The effect of tool selections
should not become apparent until a particular implementation of the process is constructed.

3.1.3 Summary
Originally, the team planned to build a skeleton SynerVision task hierarchy for the entire process,
based on the granularity of the existing manual task hierarchy, then define the essential properties
for each task in the structure. In practice, it has been virtually impossible to decompose the task
structure even one level without a good understanding of its essential properties, so definition of
the task hierarchy has been driven by analysis of the essential properties, not the other way
around. We have also learned that a process-independent view of process work products can pro-
vide valuable insight for organizing development activity. Knowledge gained through product
life-cycle modeling activity helped to define potential integration points among process tasks and

Page 16

6 June 1994 STARS-VC-A023/009/00

tools - that is, by developing alternate abstractions of the work product structure, we were able to
identify natural boundaries (primary work products, companion work products, and supporting
work products) that supported an iterative integration strategy. Development of a descriptive pro-
cess model, whether representative of an existing process or of a process to be implemented, can
be completed successfully without knowledge of the tools to be used in the automation of the pro-
cess. The capabilities of particular tools do, however, affect the development of a particular
implementation of the process.

3.2 Applying Tool Capabilities
The majority of the engineering team's effort has concentrated on the manipulation of a particular
instance of the primary work product of the process, the STARS Document. The principal environ-
mental roles to be supported are those of Task Manager (satisfied by SynerVision), Product Man-
ager (PCMS), and Metrics Manager (Amadeus). Although AutoPLAN and Design/IDEF do not
play significant roles in performance of the target process at this time, they have been employed to
assist with project planning and process modeling efforts.

This section summarizes the successes and failures of the team in application of the candidate
tools to their designated roles. The tools have proven to be generally useful and to adequately sat-
isfy their enactment roles. In general, continued use of a tool reflects overall confidence in its
long-term prospects. Negative findings may reflect a lack of understanding on the part of the team
or an incompatibility between the team's application of the tools and the intent of the tool devel-
opers, or may expose an inadequacy in utility or quality of the tools. More detailed observations
are provided as appendices to this report.

3.2.1 AutoPLAN
As mentioned in section 3.3 "Tool Integration Strategy"our long-term vision includes export of
AutoPLAN work breakdown structures for translation into SynerVision task structures and vice
versa. This potential capability has not been investigated. We have, however, used AutoPLAN
successfully to help plan and organize the project, providing an overall view of our activities
which may serve as a basis for definition of a process engineering project model. The tool's user
interface is generally consistent, though not always intuitive. With a little experience most of the
user interface quirks become minor distractions. Generation of printed graphs and reports is cum-
bersome and deserves some attention from the developer. The results of resource analysis and
schedule calculation algorithms aren't always predictable and unusual scheduling situations can
cause the tool to crash. Product documentation has not served as an adequate reference for trained
users. Project data is stored in a proprietary database, accessible only via the tool's user interface.
An available (but currently unsupported) C language Application Programming Interface report-
edly supports such major operations as database query and update, display of charts and tables,
generation of reports, and invocation of schedule calculation algorithms. For typical project plan-
ning and tracking activities, most users should find the tool easy to use with minimal training or
with initial assistance from an experienced user. Applicability of individual capabilities in a pro-
cess-driven environment will depend upon accessibility provided by the API.

Page 17

6 June 1994 STARS-VC-A023/009/00

3.2.2 Design/IDEF
In many ways Design/IDEF has been a truly valuable tool. As shown in this report the tool sup-
ports representation of a variety of information, reflecting its origins as a general purpose drawing
tool. We have been able to consolidate several different kinds of information in a single model,
suitable for iterative analysis. Some tolerance, persistence, and flexibility are required on the
user's part to achieve acceptable results. The tool is effectively closed to its environment, provid-
ing no external access to its database. A complete model is represented in a single Unix file,
which defines the level of granularity for access. While implementing the necessary mechanics to
draw IDEFO activity diagrams, the tool provides no support for author/reader cycles, version
management, or other important aspects of the IDEFO(SADT) method. To produce effective
IDEFO models, users should be well versed in IDEFO modeling techniques. Due to inaccessibility
of the underlying database, it is not practical to use the tool to execute processes interactively. If
models are kept small the tool can be used to provide interactive graphical guidance to users of a
process that is driven by other means. We have experienced reliability problems with the Unix
version of the tool, which appear to have been resolved on other platforms (PC, Macintosh). The
company acknowledges its reduced level of support for Unix users. This situation introduces an
element of risk into our process modeling activities.

3.2.3 SynerVision
SynerVision occupies the Task Manager role in our process automation environment. It provides
the primary interface between the human agent and the tool set. We have created a simple task
structure that outlines some typical categories of activity (for example, "Maintain Project Plan",
"Handle Correspondence", "Prepare CDRLs for Delivery") to be performed in a project context
By selecting one of these categories for execution the agent enables a pull-down menu of actions
pertinent to the selected task. Selection of a menu item may initiate execution of an external pro-
gram, instantiate a pre-engineered process template to create a detailed activity hierarchy for the
executing task, invoke capabilities in other tools, transmit process information to the environment
via a BMS message, or present textual or graphical guidance for manual performance of the task.

The effectiveness of Syner Vision's user interface presentation depends on how well one of the
tool's models of use (see section 3.2.3.1) maps to that of the process performer and on the level of
automation applied in the process implementation. Various mechanisms can be employed to con-
nect a Syner Vision process to the environment. Syner Vision process templates can invoke shell
scripts and other executable programs or issue SoftBench BMS messages to communicate with
other tools. External programs and tools can access SynerVision attribute data and manipulate
SynerVision tasks only via SoftBench BMS messages. Product documentation provides an excel-
lent tutorial on use of the tool for task management and simple template programming, but is not
particularly useful as a detailed technical reference. HP justifiably classifies SynerVision as a
"high support" product, meaning a typical user will require a great deal of support from the com-
pany to apply the tool effectively. Currently, HP's support organization is not adequately prepared
to provide the necessary level of support. The engineering team has required assistance from Syn-
erVision's developers to determine how to apply the tool, how to construct process templates, and
how to circumvent problems. This technical assistance has been provided by HP as part of its
commercial partnership with the Unisys STARS team, and is not available to the typical user.

Page 18

6 June 1994 STARS-VC-A023/009/00

3.2.3.1 Models of Use

HP describes four models of use for the product; we have employed three of the four to some
extent in our implementation. Managing Personal Task Lists supports such things as managing
simple to-do lists, listing and tracking time spent on monthly objectives, recording and annotating
consulting time for different clients, planning and estimating work, and automating routine tasks
such as running e-mail, printing reports, etc. Managing Group Tasks extends this idea to a team
environment by allowing team members to share the task list, allowing a team leader to distribute
tasks among the team members and coordinate dependencies via an internal task assignment
mechanism. SynerVision supports these two models reasonably well and can automatically record
time spent in each of the tasks if the performing individuals maintain the discipline to record each
start/stop sequence in SynerVision.

While the external presentation of SynerVision capabilities suggests one of the task list models
described above, its apparent application paradigm seems oriented more toward the Developing
Process Templates model. In this model a SynerVision process programmer with a detailed pro-
cess definition in hand uses a shell-like scripting language to implement a set of task hierarchies,
present notes, messages, and dialog boxes to guide a user through the steps, and perhaps automat-
ically initiate other shell processes which might invoke other tools, etc. Establishing this sort of
capability is critical to our process integration efforts, however, SynerVision provides little sup-
port for the process engineer who must do this work. Work product and life-cycle modeling con-
cepts are not apparent in any of SynerVision's capabilities. Inherent limitations in the use of
interpretive shell programming, SynerVision's reliance on "convenience" functions to facilitate
BMS messaging, and lack of control over the collection and display of system-level information
inevitably necessitate development of low-level C routines to bridge the gaps. Thus, the process
engineer must have expertise in the application of SynerVision, the SoftBench BMS, the Soft-
Bench encapsulator, and traditional C development techniques to achieve reasonable process
automation goals.

3.2.3.2 Change Vision

SynerVision's 4th model of use, Using SynerVision Process-Centered Environments is repre-
sented by SynerVision's companion product Change Vision. ChangeVision implements a software
change control process based on an underlying tracking system (QualTrak's Distributed Defect
Tracking System (DDTs), required, not included) and HP's Branch Validator, which provides test
coverage metrics (not required). Unfortunately, without DDTs or an equivalent tracking system,
ChangeVision has no value whatsoever. We may, perhaps, gain some knowledge about integrating
tools with SynerVision by examining the techniques used for ChangeVision, but otherwise Chan-
geVision cannot contribute to our environment development efforts at this time.

3.2.4 PCMS

PCMS is being applied to establish traditional configuration management (CM) and change con-
trol capabilities in our enactment environment, occupying the Product Manager role. A home-
grown SoftBench encapsulation allows PCMS to receive BMS requests from the environment,
instructing PCMS to create design parts within an overall product structure, associate component
items with the parts, and populate the items with the contents of Unix working files. PostScript

Page 19

6 June 1994 STARS-VC-A023/009/00

and clear ASCII representations of a document are built automatically as derived items in the part
structure, based on construction algorithms associated with the user-defined item type. BMS mes-
sages are also used to access PCMS-controlled items for modification and life-cycle management.
Further development may allow PCMS to transmit similar messages back to the environment to
communicate product information or request product support services.

The PCMS user interface is evolving as the product matures. Most administrative operations, con-
trol plan definition and role assignment, for example, are accessed via an Oracle Forms interface
which is a residual artifact of early versions of the tool. The dependence of this interface on func-
tion keys makes application in a heterogeneous hardware environment difficult. A more user-
friendly, though non-intuitive, X Window System interface is provided for more commonly used
product manipulation functions (check-in, check-out, etc.). Duplicative implementation of com-
plex menu structures and unusual terminology contribute to a general failure of the tool to com- .
municate its intended model of use. Formal training for process engineers in use of the tool,
definition of control plans, creation of product structures, etc. is a pre-requisite to its successful
application. Consulting services are available from the developers to assist with these activities.

Product data is stored in an Oracle database, potentially supporting flexible SQL access. Imple-
mentation of the tool's capabilities in a PCTE (Portable Common Tool Environment) or other
object-management-system-based environment has been investigated and found to be practical. A
command line interface is provided for many operations, making it possible to populate product
structures and manipulate controlled items through SoftBench messages, under the control of
SynerVision. The command line interface has proven somewhat less useful in the extraction of
product information. Use of an available C Application Programming Interface is under investiga-
tion. PCMS documentation provides an adequate reference to individual capabilities, but does lit-
tle to guide a process engineer through the many operations that must be performed to implement
a viable configuration management process.

PCMS was designed to support configuration management for software development projects. Its
apparent application paradigm reflects the processes associated with management and control of
software artifacts. The physical control of software source code modules used to generate object
modules, which are then used to build a set of executable products is an ideal application for the
tool. Direct support for classical configuration management objectives (identification, control,
accounting, and auditing) is provided. Developmental CM activities at all levels of abstraction are
supported (versioning, change control, product configuration, automated product generation,
baseline management, release control, etc.). These capabilities can also be used to manage hard-
ware, courseware, and documentation configurations to the extent that their development life-
cycles are compatible with that of software. The inability to define a control plan that allows mod-
ification of an item after it has advanced beyond its initial state (see section 3.1.2.7) may restrict
the applicability of PCMS to other kinds of processes.

3.2.5 Amadeus
Amadeus is a metrics collection, analysis, and reporting tool that can be applied in a stand-alone
or integrated application. Amadeus can be invoked through a GUI, application program interface
(API), command-line actions, or messages sent to it through HP's SoftBench BMS. Amadeus can

Page 20

6 June 1994 STARS-VC-A023/009/00

be run in manual mode (i.e., through GUI or user command-line actions), automated mode (i.e.,
Amadeus agents or command received from SoftBench or API), or a combination of both modes
(e.g., data entry being applied through both the GUI, agent(s), and SoftBench BMS messages).

The training supplied by Amadeus Software Research (ASR) to date has consisted of two types:
1) introductory; and 2) advanced. The introductory course consisted of a comprehensive tool
overview integrated with several laboratory tool usage sessions. The advanced course consisted of
an overview of such tool features as designing and implementing agents and optimizing reposito-
ries, complemented with several laboratory tool usage sessions. The Amadeus training by ASR is
outstanding and consider essential for successful tool application. The Amadeus tool documenta-
tion is still evolving and improving. It is not recommended that an organization rely solely upon
Amadeus documentation for initial tool usage.

Data collected for analyses and for generation of reports and graphs by Amadeus is contained
within an Amadeus repository. Repository data can be exported to other tools, imported into the
repository from other tools, or entered from the GUI through an entry template. The Amadeus
repository consists of records which can at maximum contain 30 fields. The repository can be
optimized for space/time performance by reducing the number of fields in a repository record.
The fields in a record can be assigned to unique data elements for an application. It is conjectured
that assignment of fields to application data elements will be critical if repositories from different
applications are to be merged in the future. The PEP project used the tool's preset field definitions.

All data processed (i.e., for collection, analyses, reports, and graphs) by Amadeus is implemented
in templates, realized by a set of Amadeus programing constructs that can be assembled in the
form of one of the following templates: 1) entry; 2) export; 3) import; and 4) graphs and reports.
At present, our application is not substantial enough to reveal any shortcomings of the constructs.
We do note that better documentation of the analyses constructs would greatly abet usage.
There are 87 templates that are included in a baseline repository. Our findings indicate that in the
majority of our applications, these templates can be modified for reuse. It is highly recommended
that applications attempt to minimize the number of templates used, since their design, develop-
ment, and testing can be quite costly in terms of time and effort. Amadeus programming con-
structs that support parameterization are needed to support template minimization. Although all
templates developed for the PEP pilot are required to be documented, a standardized set of guide-
lines are needed to assist template developers in providing the appropriate level of documenta-
tion. We predict that as the Amadeus user community grows (i.e., as observed in the STARS
Technology Transition Affiliates Amadeus Users group) standards and good practices will emerge
and become common.

As implied above, the Amadeus process paradigm is based on collecting data, analyzing data, and
generating reports and graphs. In addition, Amadeus provides automation features (for example
agents that collect data based on file monitoring events) to facilitate metrics based applications.
For the PEP pilot, the Amadeus process paradigm and features have been extremely useful. The
effort and time experienced on the PEP pilot for using this tool are minimal, however, develop-
ment of agents requires experienced script writers.

Page 21

6 June 1994 STARS-VC-A023/009/00

3.2.6 MSP & PM
During our initial information gathering and process analysis activities, a set of tools to help
record, analyze, and maintain the consistency of our PBS information would have been useful.
Even for our simple target process, the amount of textual information collected was difficult to
manage; for more complex processes it would be virtually impossible without automated assis-
tance. The Minimally Structured Processes (MSP) and Process Mapper (PM) tool sets were incor-
porated into our environment as research prototypes after the majority of our process analysis
efforts had already been completed. The tools are currently being used to support process analysis
activities for the Army STARS Demonstration Project. Early feedback from the Demo Project
indicates that the tools provide the kind of automated support needed.

The MSP & PM tool sets are currently availabile only in conjunction with process engineering
services provided by SDA. SDA has expressed an interest in supporting productization of the
technology by commercial developers of process engineering support technologies, either as part
of an integrated process engineering support environment, or as a separate product. As part of its
overall commercialization strategy, the Unisys STARS Team is encouraging STARS Prime Affili-
ates and other commercial developers of process engineering support technologies to cooperate
with SDA in this endeavor. Response to date has been favorable.

3.3 Encoding the Process
As described previously (see section 3.1 "Capturing the Existing Process") we found that, for our
target process, attempting to encode the existing process as a simple hierarchy of steps was not
viable. By simply reproducing the same sequence of detailed steps being executed manually, we
created an unnecessary layer of computerized intervention between the user and the goal. In trial
executions, detailed, low-level, sequentially dependent steps seemed to become less efficient
when executed from within the hierarchy. It often took longer to tell SynerVision that the task had
started and stopped than it did to perform the task. Some sequences could be readily executed via
shell scripts invoked from within the task structure; others would have necessitated the develop-
ment and presentation of complex information models to support the human agent's decision-
making process. Absent significant levels of automation, Syner Vision's potential to track and
report task completion depended upon the discipline and diligence of its user.

An analysis of the purpose of the "as-is" process was initiated and a "to-be" process defined.
Attempts to encode this new process for enactment were met with some frustration. The candidate
tool set does not provide a cohesive means of encoding the activity, data, and behavioral informa-
tion needed to execute the target process. Individual tools provide adequate capabilities to support
their own process roles, but each employs its own data representation and instruction set. The
resulting process implementation, though driven by a predefined process, was still largely cen-
tered around the human agent's invocation of individual tools. The cognitive load on the human
agent and the potential for reversal of agent/support roles were significant.

3.4 Automating Process Steps
To realize the environment's potential to effectively manage the target process, automation of the
interactions among the individual tools is necessary. SynerVision process templates provide one

Page 22

6 June 1994 STARS-VC-A023/009/00

mechanism for establishing programmatic control over the interactions. Based on the Unix
Bourne shell, SynerVision's interpretive template programming language supports the definition
of task structures, inter-task dependencies, and task-dependent actions. Manual and automated
actions can execute template commands directly, invoke external shell scripts or other executa-
bles, or exchange BMS messages with other SoftBench-encapsulated tools.

Due to the wide array of interface capabilities available through SynerVision, and the relative
convenience of shell programming, the team chose SynerVision templates to provide the middle-
ware needed to coordinate execution of the process. The design approach involved isolating pro-
cess control activity within the SynerVision templates as much as possible, transferring control to
another tool or external program only when necessary. Invocation via BMS messages of individ-
ual tool capabilities (particularly within PCMS and Amadeus) was preferred over non-contextual
invocation of a tool's graphical user interface.

The convenience of an interpretive language was offset to a great extent by problems associated
with writing multi-level shell programs. SynerVision actions are interpreted by an instance of the
shell separate from that used to interpret the main body of a process template. SynerVision
employs the shell-based convenience functions of the SoftBench ciclient utility for exchange of
messages with the BMS. PCMS and Amadeus command strings, passed via BMS messages, are
interpreted by yet another shell. The SoftBench Encapsulator was used to present the human pro-
cess agent with a data entry form similar to a printed form employed in the manual process imple-
mentation. Transfer of data between the shell-like encapsulation program and the SynerVision
template was problematic. In combination, the hierarchy of shells interpreting template informa-
tion, particularly shell variables and strings, proved difficult, though not impossible to manage.
For trivial SynerVision actions, such as invoking tools, executing simple shell commands, trans-
mitting BMS messages to which no response is expected, or performing other operations under
the complete control of SynerVision, the template language proved adequate. For more complex
interactions, involving the exchange of dynamic process or product information among tools or
the transfer of process control from one tool to another, interpretive programming has proven
wholly inappropriate.

The level of programming expertise required and the amount of design coordination needed to
ensure consistency among the disjoint interpretive programs is equivalent to that of traditional
software development methods without the benefit of access to system functions and data struc-
tures normally available through C or other high-order languages. The tendency of tool develop-
ers to support simple interpretive programming is understood and such support may be necessary,
however, the corresponding tendency to forego support for more structured, formal, software
development techniques negatively impacts the utility of the tools. Implementation of a fully
functional high-order process programming language, either as part of a particular tool's capabili-
ties or as a separate product would be welcomed. This, combined with an effective object man-
agement system to support integration of process and product data, could stimulate a significant
advance in the state of process automation practice.

Page 23

6 June 1994 STARS-VC-A023/009/00

4.0 Continuing Experimentation

The next phase of the Process Enactment Pilot project will examine the ability of the integrated
tool set to support live performance of the Deliver STARS Document process. Planning activities
will address formal adoption of the re-engineered process, establishment of measurement goals
for the project, and migration of the new process into the department's operating environment.
Unresolved technical issues will be addressed in the context of their impact on the ability of the
human agent to perform the process and of the process engineer to maintain it. Where significant
technical obstacles exist, alternative approaches to enacting the process will be examined.

4.1 Executing the Process
For a period of approximately one month, following management acceptance of the re-engineered
process, the team will experiment with execution of the process using documents already under
CM control. During this time the process may be revised to facilitate ease of use or to correct
errors. Absence of a fully functional PCMS message interface may necessitate exclusion of
PCMS from the tool set until appropriate interface techniques can be devised. Upon successful
completion of the trial use effort, the automated process will be employed as the primary mecha-
nism for delivering STARS documents.

4.2 Evaluating the Process Definition
The Amadeus measurement system will be used to record basic information about contract deliv-
erables, projected lead times, etc. for analysis with actual process performance data. Automated
analysis of such data to report potential impact on schedule and resources will be implemented as
resource allocations allow. Product measurements (for example, document size, sentence length,
percentage of white space, etc.) will be collected to exercise PCMS-Amadeus communications. A
set of standard process events (BEGIN/END, BEGIN/END-SETUP, BEGIN/END-COMMUNI-
CATION, BEGIN/END-WRAPUP, BEGIN-SEND, BEGIN-RECEIVE, END-NORMAL, END-
ABORT) will be recorded to facilitate computation of various elapsed time intervals for potential
correlation to resource and schedule data. Other project, product, and process measurements will
be recorded as necessary to support measurement goals.

4.3 Adapting the Process
As the process implementation matures, whether within the context of the Process Enactment
Pilot project or not, further automation will be encouraged. Additional support for preparation of
letters of transmittal, delivery notices, and other companion work products will ultimately be
required, as will automation of the record-keeping functions normally attributed to the routing
sheets and tracking forms used to support the process. As the tool set and enactment technologies
mature, as the proficiency of the process engineering team increases, and as analysis of metric
data exposes areas of potential risk, it may be desirable to revise, refine, or replace various aspects
of the implementation to take advantage of the advances.

Page 24

TASK: PV03
CDRL: A023

9 June 1994

Data Reference: STARS-VC-A023/009/00
INFORMAL TECHNICAL REPORT
Process Enactment Pilot Project
Phase II
Lessons Learned

Appendix A: Notes on Tool Usage

1.0 AutoPLAN

1.1 User Interface
The user interface is generally consistent, though not always intuitive. All operations are accessi-
ble via pull-down tool bar menus which invoke various kinds of dialog boxes; tool bar icons are
provided for alternate access to some of the more commonly used features; and a Canvas Menu,
similar (but not identical) to the tool bar Edit menu pops up when the user "right-clicks" within
the body of a chart. In some cases the use of dialog boxes is logical; in others a simple nested
menu structure would be more appropriate. With a little experience most of the user interface
quirks become minor distractions; with prolonged use they could become major irritants.

1.2 Producing Schedules
We tried to generate separate schedules for each member of the team by generating filtered views
of the master GANTT chart. For some reason, AutoPLAN does not allow indented task structures
(as used in all GANTT charts) to be filtered; the indentation must first be temporarily disabled.
Furthermore, filtered views are automatically resorted in order of their internal activity codes.
Various sorting options are available, but there is no option to sort "as entered", and it has not
always been possible to combine sorting options to achieve the desired results. The combination
of these phenomena restricts the utility of the GANTT charts.

1.3 Reporting
Initial attempts to use AutoPLAN's reporting capabilities were disappointing. A menu is provided
for customizing the format of a printed report. Unfortunately, not all of the settings are saved
along with the chart (most notably, the Report Title), making report generation more tedious than
need be. Producing a printable GANTT chart is frustrating, requiring trial-and-error manipulation
of both, the screen image, and the report format to make the inevitable multi-page print-outs read-
able. Production of readable print representations of almost any diagram, especially CPM dia-
grams and Work Breakdown Structures, was highly dependent on manual cut-and-paste
operations.

Page A-1

9 June 1994 STARS-VC-A023/009/00

1.4 Resource Analysis
We ran several resource analysis reports in an attempt to detect labor overloads. Initial results
exposed an apparent anomaly in AutoPLAN's calculation of resource distributions; the reports
did not accurately total resource data for summary tasks. We have attributed the problem to a dif-
ference between the tool's application paradigm and that of the user. Our typical practice in build-
ing a project structure is to enter a set of high-level tasks, estimate the duration of the tasks and/or
effort required to complete them, assign available resources, then decompose the tasks. When a
task is decomposed, AutoPLAN automatically redefines it as a parent, or summary, task whose
scheduled duration is determined by the scheduling parameters of its children. However, effort
and resource attributes are not automatically allocated to the task's children, so the data must be
re-entered for each child. If resource allocations for the parent tasks are not manually removed,
when AutoPLAN computes effort and resource distributions, the values originally associated with
the parent task are accumulated with those of its children, effectively doubling the computed
totals. In deeply nested project structures, the cumulative effects of this anomaly are devastating.
It is relatively simple to avoid the anomaly by waiting until all tasks have been fully decomposed
before entering effort and resource data. We would prefer not to be forced to alter our project
planning paradigm in this way.

1.5 Reliability
The tool has crashed on a couple of occasions. Although the specific cause has not been investi-
gated thoroughly, it appears to have been related to the designation of an imposed date for a mile-
stone. The date of a review was fixed by imposing the start date for the milestone. Dependencies
were established between the milestone and the activities preceding it. The computed duration for
the lead-in activities may have extended beyond the imposed milestone date. When asked to cal-
culate a schedule, AutoPLAN dumped core.

Page A-2

9 June 1994 STARS-VC-A023/009/00

2.0 Design/IDEF

2.1 User Interface
The illogical organization of Design/TDEF's pull-down menus inhibits productive use of the tool.
After a year of frequent use, it can still take several minutes to locate menu operations.

2.2 Printing Diagrams
The user must decide whether to print to a PostScript file or to a printer prior to tool invocation;
the selection is made via definition of 2 environment variables, one to specify use of the Unix
"echo" command for printing, and the other to identify the directory into which the output file is
to be written. The user is provided no means of specifying the name of the output file. The tool's
output file name generator is designed to ensure uniqueness, not to reflect information about the
model being printed, so renaming is almost always necessary. The PostScript produced is not
encapsulated, making it cumbersome to incorporate diagrams into other documentation.

2.3 Data Accessibility
The tool is effectively closed to its environment, providing no external access to its database.
Access is provided only at the model level, with a complete model represented in a single Unix
file.

2.4 Process Support
The tool is effective at drawing activity diagrams, but provides no support for author/reader
cycles, version management, or other important aspects of the IDEF0(S ADT) method. This effec-
tively limits its utility to that of a general purpose drawing package tool. With more methodologi-
cal support, either within the tool or through integration with other technologies, Design/IDEF
could qualify as a process engineering CASE tool.

2.5 Reliability
The Unix version of the tool is unreliable, unpredictable, and receives minimal developmental
attention from the company. Frequent core dumps have occurred in association with the use of
embedded text links, making this important feature of the tool unusable. It is altogether risky to
place much trust in its operation, but until other SADT modeling tools are available on Unix plat-
forms, the risk to our relatively small project is tolerable.

Page A-3

9 June 1994 STARS-VC-A023/009/00

3.0 SynerVision

3.1 User Interface
A simple task hierarchy like that employed by Syner Vision is not a fully effective means of
describing a process. Syner Vision provides various mechanisms for enhancing its hierarchical
process representation; these seem better suited to support the execution of a process than its defi-
nition. Though the user interface for each of these capabilities has an X Motif look, their/ee/ is
distinctly menu-oriented, and there is little consistency in the way they operate. Manipulation of
display objects is accomplished through button clicks that invoke various menus; many of the
operations thus performed should not require accessing an intermediate menu.

Syner Vision's Project, Task, Attributes, Navigate, and View menus are identical for all tasks and
are accessed via the tool bar. A single unnamed menu provides access to several unrelated opera-
tions: starting and stopping execution of a task, manually changing the status of the task, and relo-
cating the task in the hierarchy. This menu is accessed by clicking the right mouse button on the
target task. The Actions menu, which provides access to manual actions specific to a particular
task, appears in the tool bar, along with the non-task-specific menus. One might expect all menus
that apply to all tasks equally to reside in the tool bar at the top of the Syner Vision window, and
menus tailored to specific tasks to be associated with the task, or at least to see consistency in their
placement

Double-clicking on a task title causes Syner Vision to re-orient its display, focused on that task;
execution of the task would seem a more logical choice of operations for "double-click", and
would be consistent with other X environments with which we are familiar. HP's own VUE win-
dowing environment allows the user to define the action associated with a "double-click" on a
particular class of display object; a similar capability would enhance Syner Vision's usability.

Moving tasks around in the hierarchy is relatively simple, though it requires a 6-step drag and
drop sequence. The operation should require no more than half that number of steps. Establishing
dependencies between tasks uses a different, more cumbersome interface. Task attributes are
divided into groups called Notes, Dependencies, Access, Actions, and the cryptic Basic, which
actually includes scheduling information. Alternative access to these and more attributes is pro-
vided through a Low Level Attributes group. Each group is manipulated through a completely dif-
ferent interface. Support for defining trivial manual actions is adequate, but more complex manual
actions and all automated actions must be defined via a Unix shell interface. Manual actions can
be inherited by the children of the task that owns the definition of the action; automated actions
cannot.

3.2 Models of Use
HP describes four models of use for the product. Managing Personal Task Lists supports such
things as managing simple to-do lists, listing and tracking time spent on monthly objectives,
recording and annotating consulting time for different clients, planning and estimating work, and
automating routine tasks such as running e-mail, printing reports, etc. Managing Group Tasks
extends this idea to a team environment by allowing team members to share the task list, allowing
a team leader to distribute tasks among the team members and coordinate dependencies via an

Page A-4

9 June 1994 STARS-VC-A023/009/00

internal task assignment mechanism. SynerVision supports these two models reasonably well and
can automatically record time spent in each of the tasks if the performing individuals maintain the
discipline to record each start/stop sequence in SynerVision.

While the external presentation of SynerVision capabilities suggests one of the task list models
described above, its apparent application paradigm seems oriented more toward the Developing
Process Templates model. In this model a SynerVision process programmer with a detailed pro-
cess definition in hand would use a shell-like scripting language to implement a set of task hierar-
chies, use notes, messages, and dialog boxes to guide a user through the steps, and perhaps
automatically initiate other shell processes which might invoke other tools, etc. Establishing this
sort of capability is critical to our process integration efforts, however, SynerVision provides little
support for the process engineer who must do this work. Work product and life-cycle modeling
concepts are not apparent in any of SynerVision's capabilities. Inherent limitations in the use of
interpretive shell programming, implementation of "convenience" functions to facilitate BMS
messaging, and lack of control over the collection and display of system-level information inevi-
tably necessitate development of low-level C routines to bridge the gaps. Thus, the process engi-
neer must have expertise in the application of SynerVision, the SoftBench BMS, the SoftBench
encapsulator, and traditional C development techniques to achieve reasonable process automation
goals.

3.3 Writing Process Templates
SynerVision provides little direct support for the Developing SynerVision Templates model.
Essentially, the process engineer must apply traditional software engineering techniques to con-
struct an interpretive "Bourne-shell-like" program to create and manipulate SynerVision tasks,
their attributes and actions. It is possible to take advantage of tool features to reduce the tedium
somewhat, but this should not be considered the primary mode of operation. A task hierarchy can
be entered via the interactive outliner used for task management. Sequential dependencies
between tasks, based on changes in task status, can be defined. Manual actions can be defined and
tested for tasks or groups of tasks in the hierarchy, and notes can be entered. It is possible to define
automated actions via the Low Level Attributes menu, but the user interface for doing so is virtu-
ally incomprehensible and its use is unadvisable. The task structure, including all dependencies,
actions, notes, and static attributes can be translated to SynerVision template format, using the
Task/Generate Template operation on the tool bar or the genjemplate shell script.

This method may be useful in a process prototyping environment when the process is changing
rapidly and small revisions need to be tested quickly. Use of the interactive outliner to enter the
initial task structure can also provide some benefit to those who prefer point-and-click operations
to text editing, even though most operations seem to require too much mouse manipulation. For
personal task hierarchies, static processes that are identical in each instance, or templates for
which maintenance is uncomplicated, the method may prove adequate. For development of reus-
able templates, templates which are placed under formal change control, structured sets of tem-
plates, or incorporation of automated actions, some off-line revision of the template will be
necessary. Most such revisions are retained when the template is re-instantiated as a SynerVision
process, but are lost if the template is re-generated from SynerVision, making the method non-
iterative.

Page A-5

9 June 1994 STARS-VC-A023/009/00

3.3.1 Language Considerations

Interpretive shell languages are an integral part of any Unix environment; Bourne shell is, per-
haps, the most common. It provides an appropriate mechanism for programming trivial applica-
tions, but does not adequately support development of complex process programs. Its
commonality among hardware platforms makes it a logical choice for programming simple inter-
actions between a single tool and the Unix environment. When used to coordinate operations
among several such tools, communicating through multiple layers of shells, its utility degrades
quickly. Even determination of appropriate string quoting sequences to support transfer of data
through multiple shells can require a great deal of trial and error.

SynerVision complicates this situation further by employing multiple shells internally. Manual
and automated actions are interpreted by a different instance of the shell than the main body of a
template, placing a communication barrier between the two (we have not located this information
in any Syner Vision documentation). The product's developers have advised us that the quoting
rules are those of the Bourne shell, except that the contents of actions are sent through a second
shell at action execution time, and "an extra level of quoting is sometimes required". If the termi-
nation tag for the here document that defines an action, is not quoted, variable substitution, inter-
pretation of back-quotes, etc. is performed when the action is defined - that is, when the template
is instantiated, otherwise these operations are deferred until the action is executed. Depending on
the combination of quotes used in the termination tag and used within the action definition, the
programmer's ability to manipulate environment variables and task attributes (see section 3.3.2
"Data Storage") can vary greatly. A working combination can probably be found for most appli-
cations, given enough experience with the tool. Development or adoption of a fully functional
process programming language is needed.

3.3.2 Data Storage
Due to inadequacies of shell-based programs in storing persistent data, alternate storage mecha-
nisms are sometimes needed. Syner Vision provides for definition of custom attributes for storage
of user data associated with tasks. The additional attributes must be defined in the database
schema for an entire project and every task carries the burden for storage of the data. This method
is appropriate if one assumes all attributes apply equally to all tasks (attributes like project name,
task owner, and elapsed time are good examples). For storing information pertinent only to one
kind of task, burdening the rest of the task hierarchy with the storage of meaningless attributes is
unacceptable. In actual practice, empty attributes consume only minimal storage space, but the
time required to load them into memory can be significant, especially for large task hierarchies.
To achieve reasonable flexibility, we have resorted to storage of such data in an external database,
which is wholly undesirable.

3.3.3 Retrieving User-Defined Data
SynerVision provides a mechanism (svprompt) for prompting the user for information. Its use is
restricted to the entry of a single filepath, a single- or multiple-line text string, and the selection of
exclusive or non-exclusive toggle buttons. For manual process flow control, or entry of a single
data item, the function performs well. Our application requires the retrieval of several data items
(CDRL reference, author, location of working files, etc.) for each instance of the target process;

Page A-6

9 June 1994 STARS-VC-A023/009/00

we employed the SoftBench Encapsulator to build a data entry form which is presented automati-
cally to the user when the process is initially executed. The Encapsulator provided no mechanism
for passing the data back to SynerVision, but we were able to revise the SynerVision template to
retrieve the data via output to a temporary file; by restricting the format of string entries, we were
also able to retrieve data directly into the template shell. Addition of a data entry mechanism to
SynerVision capabilities would be welcomed.

3.4 Reporting
SynerVision's reporting capabilities are rudimentary. It is possible to print a copy of the task
structure as it appears on the screen, but there is no capability for customizing the format of the
resulting print. Bourne shell scripts can be written to produce reports in any format desired, but
expanded support from the tool is needed.

3.5 Documentation
The documentation set for SynerVision, when read from beginning to end, presents an excellent
tutorial on use of the product's basic capabilities. The index provides reasonable access to
descriptions of individual capabilities. On-line help duplicates the information in a well-presented
point-and-click browser. As a technical reference the documentation is less useful. Unix "man"
pages are included in the printed material to augment the level of technical detail. The complexi-
ties of building an interface between SynerVision and its environment (appropriate use of Soft-
Bench messages, coordinating shell interactions, using svprompt, etc.) need to be addressed in the
documentation.

3.6 Support
HP classifies SynerVision as a "high support product", meaning the company expects users to
need assistance in its application. The individuals who provide support via the HP Customer
Response Centers are cooperative and willing to serve, but their knowledge of the product is
unacceptably limited (we have found this to be the case with most other HP products, as well). An
electronic reporting mechanism is available, providing a mechanism for formally documenting
problems and questions (handled by Response Center staff), as well as access to general product
information and user comments. The developing organization has helped to overcome this defi-
ciency by providing technical assistance when necessary, but overall the support system doesn't
work well. Problems reported to the Response Centers via telephone are not usually tractable via
the electronic database, and vice versa. Organizational problems affecting communication and
coordination of response are apparent.

3.7 Miscellaneous

3.7.1 Core Dump
For months, whenever we attempted to bring up a Graphical display of a SynerVision process, the
tool would crash. HP support could offer no assistance in solving this problem. The cause turned
out to be the existence of a definition for X resource (*cursor) in the user's environment. The
problem was solved by removing the *cursor definition from the user's X resource defaults,
unnecessarily restricting local control of the user's work environment.

Page A-7

9 June 1994 STARS-VC-A023/009/00

3.7.2 Deleting Tasks from Shared Projects
Tasks cannot be deleted from shared projects, which introduces some difficulty during experimen-
tation and debugging. HP support suggested moving the task to the owner's personal project and
deleting from there; it worked.

3.7.3 Multiple Actions
Only a single action matching all the discriminators (Status, New, Inprogress, execute) may be
defined for a single task. HP support suggested including multiple shell script calls in a single
action to split things up, which did not product the desired effect.

3.7.4 Sparc Support
SynerVision creates and manipulates its own directory structures within the user's task repository,
and employs a file locking mechanism (pmlockd) to ensure file integrity. File organization on
SUN workstations is different, so a different version of pmlockd is needed. HP promises develop-
ment of this utility for the Solaris OS, but has no plans to support SunOS. Attempts to license the
source code for development of a SunOS implementation have been unsuccessful.

3.8 Summary
Syner Vision is a significant new technology whose potential has not been realized. The Syner Vi-
sion concept is viable, but its implementation falls far short of our expectations. Preliminary
observations indicate that SynerVision will perform well purely as an engine for execution of an
automated process. At present, the ability to automate such execution may be SynerVision's only
advantage over other, less complex, less expensive software packages. To take advantage of that
ability, additional capabilities are needed (within the SynerVision product, or elsewhere) to sup-
port the process engineering effort required to develop executable process templates. Current tem-
plate development support is highly dependent on other HP products with which SynerVision has
not been fully integrated, perhaps due to a failure of the developers to anticipate complex applica-
tion of the product. By thoroughly re-examining the product's multi-level objectives and by
investing in a significant re-engineering effort SynerVision could become a valuable component
of a process-driven environment within the next 2-5 years. Until such an effort can be completed,
SynerVision's effort/benefit ratio will remain quite high, and our confidence in recommending the
product for operational use will be limited.

Page A-8

9 June 1994 • STARS-VC-A023/009/00

4.0 PCMS
PCMS was designed to support Configuration Management for software development projects.
As such, its application paradigm reflects the processes associated with management and control
of software artifacts. The physical control of software source code modules used to generate
object modules, which are then used to build a set of executable products is an ideal application
for the tool. Direct support for classical configuration management objectives (identification, con-
trol, accounting, and auditing) is provided. Developmental CM activities at all levels of abstrac-
tion are supported (versioning, change control, product configuration, automated product
generation, baseline management, release control, etc.). These capabilities can also be used to
manage hardware, courseware, and documentation configurations to the extent that their develop-
ment life-cycles are compatible with that of software.

4.1 User Interface
The complexities and relative immaturity of PCMS tool necessitate formal training, especially for
process engineers or other individuals responsible for integration and application of the tool. Dif-
ferent capabilities of the tool employ different user interface techniques, and reflect a European
language influence on terminology that is often confusing. Addition of an interactive help facility
would be a great benefit to the product.

In early versions of the product, user interaction with PCMS was provided via an Oracle Forms
interface (PCMS employs Oracle as its underlying database). In PCMS version 4.0, an X/Motif
interface (XPCMS) has been included for the first time. Most operations performed by a typical
user (creating parts hierarchy, checking items in and out, etc.) are accessible via the X interface.
Other less frequently used, but nonetheless critical, functions still rely on Oracle Forms. PCMS
setup (creation of the control plan) must be done through Oracle Forms. The forms interface is
relatively difficult to use, due to its pervasive use of control key combinations and function keys.
Key sequences for many commands vary significantly, depending on the configuration of the key-
board being used. Product documentation only reflects a small number of different keyboard con-
figurations, and is not reliable. In a heterogeneous environment populated with workstations from
many different vendors, this sort of dependency is unacceptable. SQL is planning to completely
replace the Oracle Forms interface with the X/Motif interface in a future version of PCMS.

Annoying inconsistencies in the Forms interface have been noted. For example, the dialog box
used to prompt the user to COMMIT changes before exiting the tool is not always displayed. Both
the XPCMS interface and the forms interface can be opened from different windows at the same
time to allow frequent iteration between the two when testing a newly created part of the control
plan. It is sometimes necessary to refresh the XPCMS screen, but this a simple operation. PCMS
utilizes the Unix sendmail system to notify appropriate users when the life-cycle state of a con-
trolled item has changed. During PEP experimentation with PCMS, the number of messages
transmitted has been an annoyance. In our process enactment, we would also like to use a differ-
ent mechanism to communicate this kind of information, but we have been unable to disable the
feature.

PCMS also supports a command line interface to many of its functions. The command syntax is
tricky and related documentation is not well organized. We have been somewhat successful in the

Page A-9

9 June 1994 STARS-VC-A023/009/00

application of the command line interface as the basis for SoftBench access to the tool. It has
proven relatively simple to use the command line interface to create and manipulate product
structures within the PCMS database, but we have been unable to identify suitable techniques for
querying the structures to find the items associated with a part, etc. It seems such information can
only be accessed interactively or through the C Application Programming Interface. This diffi-
culty places severe restrictions on our ability to use the tool in an automated process enactment.
We have also been unable to route PCMS error messages to SynerVision for visual presentation.
We expect to circumvent some of these difficulties as we gain experience with the tool.

4.2 Control Plans
PCMS provides a degree of process control through the use of a control plan. This control plan is
used to create roles which control PCMS user access to groups of items (files under configuration
control) and control promotion of items through their life-cycle states. Life-cycles for item types,
design part types, rules for design part types, change management rules, template forms, and
attributes of items and design parts. Design parts are used to create a hierarchy for management of
items. A control plan must be defined before any instance of an item type can be stored. The con-
trol plan is set up using the Oracle Forms interface to PCMS; access via XPCMS is planned for a
future release. There is no mechanism in PCMS for creating a printed report describing a control
plan.

Development of a PCMS control plan is difficult for the first-time PCMS user. PCMS training
classes include a discussion of how to enter the individual sections of the control plan, but do give
insight as to the strict sequence in which these sections must be entered. The documentation does
not provide more guidance. Within the sections of the control plan, it was difficult to determine
what we needed to enter in specific fields. There was also little guidance available about which
sections of the control plan and fields within these sections were mandatory. Different sections of
the control plan often referred to the same field by different names. A more comprehensive train-
ing program and documentation and a good help that guides the creation of a control plan would
be of great benefit. Even PCMS users need some training about the control plan, since this plan
governs what is allowed in their interactions with PCMS.

Designed for management of software source code, PCMS control plans include state life-cycles
for item types, with roles for each life-cycle transition. The authority to change states for an item
version is rigidly restricted by these life-cycles, so care must be taken to ensure that the level of
control specified is compatible with practical operations. Only one user can be authorized to
change the control plan for a given PCMS product. (Within PCMS a product refers to an entire
design part hierarchy.) For some types of managed items, strict configuration management may be
necessary to ensure that the reasons for each change in a product are known, and to ensure recov-
ery to a previous configuration. Other types may require minimization of life-cycle restrictions.

PCMS item life-cycles allow an item version to change states based on degree of validation that
has been performed on the item version. Regardless of the control plan defined for a particular
item type, PCMS only allows modification of a particular version of an item while the version is
in its initial state. This restriction makes it impossible to define a product life-cycle that supports
incorporation of review comments, correction of typographical errors, addition of electronic sig-

PageA-10

9 June 1994 STARS-VC-A023/009/00

natures, or any other modification without re-executing the entire validation life-cycle. Once a
change is made, the item's life-cycle must be re-executed from the beginning. In a software devel-
opment process, where any change to source code might necessitate re-execution of a life-cycle
that involves code review, unit test, etc., the restriction may make sense. In other processes the
restriction make it impossible to accurately represent the true life-cycle of a the process's work
products using PCMS item life-cycles. The initial state for changes restriction also makes it
impossible to give different roles item change authority at different points in the item's life-cycle.
We also found the necessity to define control plans early a hindrance to prototyping and debug-
ging PCMS product structures, etc. The ability to disable control plan enforcement during such
activities is desired.

Life-cycles of items in PCMS are used to determine validation state of individual versions of
items. Life-cycles can only be linked between a change document and a product, and these links
are very inflexible. The PEP Project team created general life-cycle models for process work
products. There is no mechanism in PCMS for entering these general item life-cycles and linking
them to life-cycles of other items.

4.3 Product Hierarchies
PCMS allows the creation of hierarchies of design parts. Items are stored and controlled within
this hierarchy. It was not trivial to decide how to best set up this design part hierarchy to match the
needs of the PEP Project. Design part hierarchy should be part of the general product model and
should be determined when creating this model, but certain choices make it easier to set up other
PCMS item control functions such as baselines and configuration builds. Design part hierarchies
can be printed in PCMS reports. It is worthwhile to note that'the representations used to establish
design part hierarchies and life-cycles in PCMS can also serve as adequate, if tool-influenced,
descriptive models of the products to be managed.

4.4 Repository Construction and Access
PCMS stores control plan information, design part hierarchy, and item names within an Oracle
database. Individual items are stored within Unix, with all item of the same type stored in the
same directory. This directory structure necessitates creating unique names for items within a
type. When items are extracted, these unique names are used instead of the original file names.
This caused difficulties on the PEP Project, because external build routines assumed the original
file names.

PCMS also allows the storage of item versions by storing the differences between these items
(using SCCS), to save space. However, to use this feature every PCMS user must have write
access to the Unix directory structure holding the items. Any user could circumvent PCMS by
directly accessing this Unix directory structure.

4.5 Use of Environment Items
Environment items are used in PCMS to relate items for creating baselines and configuration
builds. Different types of environment items are needed for baselines versus configuration builds,
so duplicate environment items must be created to handle both cases.

Page A-11

9 June 1994 STARS-VC-A023/009/00

4.6 Version Management
PCMS follows a policy of strict configuration control of all items. This policy cannot be circum-
vented. For example, an item cannot be deleted until every baseline and configuration build that
uses the item is deleted. On the PEP Project, this policy made it difficult to represent parts of our
process in PCMS, because we were allowing a more flexible policy.

4.7 Baseline Management
Baseline management in PCMS allows the creation of a baseline of a group of items. The baseline
management facilities provided in PCMS made it easy to create baseline plans and to execute
baselines.

4.8 Configuration Builds
Configuration builds are used in PCMS to create derived items, such as object files and executa-
bles from source code. Once the configuration build plans are created, executing these builds
within PCMS is simple. Creation of the configuration build plans is very complex. Training is
provided by SQL on configuration builds, and this training is recommended.

4.9 Additional Capabilities
The following capabilities of PCMS have not been exercised by the PEP Project to any significant
degree, due to resource restrictions. These capabilities may be explored in the future.

Design part and item attributes
Change management
Variants
Release generation and control
Archival, retrieval, and transfer

4.10 Documentation and Training
PCMS documentation and training was found to be inadequate for our needs. PCMS documenta-
tion provided information on each section of the Oracle Forms interface and each XPCMS com-
mand. No training or documentation was provided on the methodology that must be used create
the PCMS control plan or on the methodology that must be used to create a product model to sup-
port that control plan. PCMS consulting is available to assist organizations in these areas.

4.11 Reliability
Both the PCMS Oracle Forms interface and the XPCMS interface were found to be fairly reliable.
The XPCMS interface did crash and core dump a few times during our use of the tool, but in all
cases the tool could be restarted. We were not able to determine what caused these crashes, since
entering the same commands after the tool was restarted did not cause the crash to reoccur.

Page A-12

9 June 1994 STARS-VC-A023/009/00

4.12 Tool Integration
SynerVision's hierarchical process was difficult to reconcile with PCMS's "circular" item version
life-cycles, where item changes require cycling back to the original life-cycle state or creation of a
new version.

4.13 Summary
PCMS is a suitable product for providing configuration control on larger software development
projects. It includes direct support for the configuration management objectives of identification,
control, accounting, and auditing. Setting up the PCMS control plan and structure is difficult for a
PCMS novice, but consulting support can be obtained. Some difficulties were encountered in try-
ing to adapt PCMS for general product support within a defined process. We will continue inves-
tigating whether PCMS can be used to provide this process support.

Page A-13

